

Customer: SafeEarth
Date: April 11th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document
Name Smart Contract Code Review and Security Analysis Report for SafeEarth

- Initial Audit

Approved by Andrew Matiukhin | CTO Hacken OU

Type ERC20 Token / ETH Swap
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided Verification,

Manual Review
Deployed
code

https://etherscan.io/address/0xe6f1966d04cfcb9cd1b1dc4e8256d8b501b11c
ba#code

Timeline 8 APRIL 2021 – 11 APRIL 2021
Changelog 11 APRIL 2021 – INITIAL AUDIT

https://etherscan.io/address/0xe6f1966d04cfcb9cd1b1dc4e8256d8b501b11cba#code
https://etherscan.io/address/0xe6f1966d04cfcb9cd1b1dc4e8256d8b501b11cba#code

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 6

AS-IS overview 7

Conclusion 9

Disclaimers 10

Introduction

Hacken OÜ (Consultant) was contracted by SafeEarth (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its
code review conducted on April 11th, 2021.

Scope

The scope of the project is a smart contract deployed in the Ethereum network:

https://etherscan.io/address/0xe6f1966d04cfcb9cd1b1dc4e8256d8b501b11cba#code

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

https://etherscan.io/address/0xe6f1966d04cfcb9cd1b1dc4e8256d8b501b11cba#code

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contract is secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. A general overview is presented in AS-IS
section, and all found issues can be found in the Audit overview section.

Security engineers found 4 informational issues during the first review.

Graph 1. The distribution of vulnerabilities after the first review.

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description
Critical Critical vulnerabilities are usually straightforward to

exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview
 Critical

No Critical severity issues were found.

 High

No High severity issues were found.

 Medium

No Medium severity issues were found.

 Low

No Low severity issues were found.

 Lowest / Code style / Best Practice

1. Vulnerability: Too many digits
Contracts: SAFEEARTH

Literals with many digits are difficult to read and review. Please
consider using scientific notation and ether units for better
readability. Ex. instead of 1000000000 * 10**6 * 10**9 try the
following:

- 1e6 ether
- 1e9 finney
- 1e15 * 10**_digits
- or even 1_000_000_000 * 1e6 * 10**_digits

Lines: SAFEEARTH.sol#225

uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

Lines: SAFEEARTH.sol#247-248

uint256 public _maxTxAmount = 5000000 * 10**6 * 10**9;

uint256 private numTokensSellToAddToLiquidity = 500000 * 10**6 * 10**9;

2. Vulnerability: State variables that could be declared constant

Contract: SAFEEARTH

State variables that never change their values should be declared
constant to save gas.

Lines: SAFEEARTH.sol#225

uint256 private _tTotal = 1000000000 * 10**6 * 10**9;

Lines: SAFEEARTH.sol#229-231

string private _name = "SafeEarth";

string private _symbol = "SAFEEARTH";

uint8 private _decimals = 9;

3. Vulnerability: Public function that could be declared external

Contracts: SAFEEARTH

public functions that are never called by the contract should be
declared external to save gas.

Lines: SAFEEARTH.sol#279

function name() public view returns (string memory) {

Lines: SAFEEARTH.sol#283

function symbol() public view returns (string memory) {

Lines: SAFEEARTH.sol#287

function decimals() public view returns (uint8) {

Lines: SAFEEARTH.sol#291

function totalSupply() public view override returns (uint256) {

Lines: SAFEEARTH.sol#300

function transfer(address recipient, uint256 amount) public override

returns (bool) {

Lines: SAFEEARTH.sol#305

function allowance(address owner, address spender) public view override

returns (uint256) {

Lines: SAFEEARTH.sol#309

function approve(address spender, uint256 amount) public override

returns (bool) {

Lines: SAFEEARTH.sol#314

function transferFrom(address sender, address recipient, uint256

amount) public override returns (bool) {

Lines: SAFEEARTH.sol#320

function increaseAllowance(address spender, uint256 addedValue) public

virtual returns (bool) {

Lines: SAFEEARTH.sol#325

function decreaseAllowance(address spender, uint256 subtractedValue)

public virtual returns (bool) {

Lines: SAFEEARTH.sol#330

function isExcludedFromReward(address account) public view returns

(bool) {

Lines: SAFEEARTH.sol#334

function totalFees() public view returns (uint256) {

Lines: SAFEEARTH.sol#338

function deliver(uint256 tAmount) public {

Lines: SAFEEARTH.sol#347

function reflectionFromToken(uint256 tAmount, bool deductTransferFee)

public view returns(uint256) {

Lines: SAFEEARTH.sol#364

function excludeFromReward(address account) public onlyOwner() {

Lines: SAFEEARTH.sol#396

function excludeFromFee(address account) public onlyOwner {

Lines: SAFEEARTH.sol#400

function includeInFee(address account) public onlyOwner {

Lines: SAFEEARTH.sol#426

function setSwapAndLiquifyEnabled(bool _enabled) public onlyOwner {

Lines: SAFEEARTH.sol#515

function isExcludedFromFee(address account) public view returns(bool) {

4. Lines 267, 269, 314, 316, 325, 326, 347, 386, 408, 442, 444, 455, 472,
551, 634, 643, 653 of the SAFEEARTH.sol are above the recommended
maximum line length.

https://docs.soliditylang.org/en/v0.6.12/style-guide.html#maximum-line-length

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of
functionality was presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 4 informational issues during the first review.

Category Check Items Comments
➔ Code Review ➔ Style guide violation ➔ Public function that

could be declared
external

➔ Maximum Line Length
➔ State variables that

could be declared
constant

➔ Too many digits

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

